Abstract
Let G be a finite group and H a normal subgroup. By D(H; G), we denote the crossed product of C(H) and (Formula presented.), which is only a subalgebra of the quantum double D(G) of G. One can construct a C∗-subalgebra (Formula presented.) of the field algebra (Formula presented.) of G-spin models, such that (Formula presented.) is a D(H; G)-module algebra. The concrete construction of D(H; G)-invariant subalgebra (Formula presented.) of (Formula presented.) is given. Moreover, the C∗-index of the conditional expectation (Formula presented.) from (Formula presented.) onto (Formula presented.) is calculated in terms of the quasi-basis for zH.
Original language | English |
---|---|
Pages (from-to) | 3689-3697 |
Number of pages | 9 |
Journal | Mathematical Methods in the Applied Sciences |
Volume | 45 |
Issue number | 7 |
DOIs | |
Publication status | Published - 15 May 2022 |
Keywords
- C-index
- conditional expectation
- quantum double
- quasi-basis