Crowdsourcing database systems: Overview and challenges

Chengliang Chai, Ju Fan, Guoliang Li, Jiannan Wang, Yudian Zheng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

30 Citations (Scopus)

Abstract

Many data management and analytics tasks, such as entity resolution, cannot be solely addressed by automated processes. Crowdsourcing is an effective way to harness the human cognitive ability to process these computer-hard tasks. Thanks to public crowdsourcing platforms, e.g., Amazon Mechanical Turk and CrowdFlower, we can easily involve hundreds of thousands of ordinary workers (i.e., the crowd) to address these computer-hard tasks. However it is rather inconvenient to interact with the crowdsourcing platforms, because the platforms require one to set parameters and even write codes. Inspired by traditional DBMS, crowdsourcing database systems have been proposed and widely studied to encapsulate the complexities of interacting with the crowd. In this tutorial, we will survey and synthesize a wide spectrum of existing studies on crowdsourcing database systems. We first give an overview of crowdsourcing, and then summarize the fundamental techniques in designing crowdsourcing databases, including task design, truth inference, task assignment, answer reasoning and latency reduction. Next we review the techniques on designing crowdsourced operators, including selection, join, sort, top-k, max/min, count, collect, and fill. Finally, we discuss the emerging challenges.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE 35th International Conference on Data Engineering, ICDE 2019
PublisherIEEE Computer Society
Pages2052-2055
Number of pages4
ISBN (Electronic)9781538674741
DOIs
Publication statusPublished - Apr 2019
Externally publishedYes
Event35th IEEE International Conference on Data Engineering, ICDE 2019 - Macau, China
Duration: 8 Apr 201911 Apr 2019

Publication series

NameProceedings - International Conference on Data Engineering
Volume2019-April
ISSN (Print)1084-4627

Conference

Conference35th IEEE International Conference on Data Engineering, ICDE 2019
Country/TerritoryChina
CityMacau
Period8/04/1911/04/19

Keywords

  • Crowdsourcing
  • Database

Fingerprint

Dive into the research topics of 'Crowdsourcing database systems: Overview and challenges'. Together they form a unique fingerprint.

Cite this