Cross-Dataset Distillation with Multi-tokens for Image Quality Assessment

Timin Gao, Weixuan Jin, Bokai Lai, Zhen Chen, Runze Hu, Yan Zhang*, Pingyang Dai

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

No Reference Image Quality Assessment (NR-IQA) aims to accurately evaluate image distortion by simulating human assessment. However, this task is challenging due to the diversity of distortion types and the scarcity of labeled data. To address these issues, we propose a novel attention distillation-based method for NR-IQA. Our approach effectively integrates knowledge from different datasets to enhance the representation of image quality and improve the accuracy of predictions. Specifically, we introduce a distillation token in the Transformer encoder, enabling the student model to learn from the teacher across different datasets. By leveraging knowledge from diverse sources, our model captures essential features related to image distortion and enhances the generalization ability of the model. Furthermore, to refine perceptual information from various perspectives, we introduce multiple class tokens that simulate multiple reviewers. This not only improves the interpretability of the model but also reduces prediction uncertainty. Additionally, we introduce a mechanism called Attention Scoring, which combines the attention-scoring matrix from the encoder with the MLP header behind the decoder to refine the final quality score. Through extensive evaluations of six standard NR-IQA datasets, our method achieves performance comparable to the state-of-the-art NR-IQA approaches. Notably, it achieves SRCC values of 0.932 (compared to 0.892 in TID2013) and 0.964 (compared to 0.946 in CSIQ).

Original languageEnglish
Title of host publicationPattern Recognition and Computer Vision - 6th Chinese Conference, PRCV 2023, Proceedings
EditorsQingshan Liu, Hanzi Wang, Rongrong Ji, Zhanyu Ma, Weishi Zheng, Hongbin Zha, Xilin Chen, Liang Wang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages384-395
Number of pages12
ISBN (Print)9789819985364
DOIs
Publication statusPublished - 2024
Event6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023 - Xiamen, China
Duration: 13 Oct 202315 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14430 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023
Country/TerritoryChina
CityXiamen
Period13/10/2315/10/23

Keywords

  • Distillation
  • Image quality assessment
  • Transformer

Fingerprint

Dive into the research topics of 'Cross-Dataset Distillation with Multi-tokens for Image Quality Assessment'. Together they form a unique fingerprint.

Cite this