Abstract
Ti based Metal-organic frameworks materials, with their high surface area, visible light responsiveness, and abundant catalytic active sites, have emerged as efficient photocatalysts. However, the number of reports on titanium-based MOFs is limited, mainly due to the challenges associated with their synthesis. In this study, based on the covalent strategy of imine condensation, a novel Ti-MOF was designed and synthesized by rational selection of aldehyde ligands. The photocatalytic CO2 reduction performance of the Ti-MOF was evaluated, and it exhibited a remarkable generation rate of formate ions at 46.0 μmol g−1 h−1, which is more than 6 times higher than that of MOF-902 constructed with the same titanium cluster. The rational selection of aldehyde ligands resulted in a relatively superior band structure for the Ti-MOF, characterized by a narrowed bandgap and a significantly negative shift of the conduction band, leading to enhanced photocatalytic ability.
Original language | English |
---|---|
Article number | 114042 |
Journal | Molecular Catalysis |
Volume | 558 |
DOIs | |
Publication status | Published - 1 Apr 2024 |
Keywords
- CORR
- Formate
- Metal–organic framework
- Photocatalysis