Abstract
Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a coordinate space translation technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Ldde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O(3P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.
Original language | English |
---|---|
Article number | 154308 |
Journal | Journal of Chemical Physics |
Volume | 134 |
Issue number | 15 |
DOIs | |
Publication status | Published - 21 Apr 2011 |