TY - JOUR
T1 - Cooperative near-space interceptor mid-course guidance law with terminal handover constraints
AU - Zhang, Haoqiang
AU - Tang, Shengjing
AU - Guo, Jie
N1 - Publisher Copyright:
© IMechE 2018.
PY - 2019/5/1
Y1 - 2019/5/1
N2 - A cooperative problem in mid-course guidance phase is addressed in this paper. For providing suitable initial conditions of successful terminal salvo attack, a novel finite-time cooperative mid-course guidance law with terminal handover constraints is proposed. Firstly, a three-dimensional guidance model of mid-course is decoupled in a planar line-of-sight frame as a two-point boundary value problem. The terminal handover constraints which can guarantee an ideal zero effort terminal engagement are proposed and analyzed. Secondly, the design of the cooperative mid-course guidance law is separated into two stages. The acceleration commands along the line-of-sight direction are developed based on the finite-time average-consensus protocol and super-twisting algorithm in the first stage. In the second stage, the model predictive static programming method is adopted to solve the two-point boundary value problem in line-of-sight frame with a known final time from first stage. Furthermore, sliding mode control theory is used in combination with model predictive static programming method to satisfy terminal handover constraints with bounded perturbation. Finally, numerical simulations of two four-interceptor cooperative scenario are carried out to verify the validity of the proposed cooperative guidance law. The simulation results reflect that all the four interceptors can reach their own predictive interception points with specific approach angles simultaneously.
AB - A cooperative problem in mid-course guidance phase is addressed in this paper. For providing suitable initial conditions of successful terminal salvo attack, a novel finite-time cooperative mid-course guidance law with terminal handover constraints is proposed. Firstly, a three-dimensional guidance model of mid-course is decoupled in a planar line-of-sight frame as a two-point boundary value problem. The terminal handover constraints which can guarantee an ideal zero effort terminal engagement are proposed and analyzed. Secondly, the design of the cooperative mid-course guidance law is separated into two stages. The acceleration commands along the line-of-sight direction are developed based on the finite-time average-consensus protocol and super-twisting algorithm in the first stage. In the second stage, the model predictive static programming method is adopted to solve the two-point boundary value problem in line-of-sight frame with a known final time from first stage. Furthermore, sliding mode control theory is used in combination with model predictive static programming method to satisfy terminal handover constraints with bounded perturbation. Finally, numerical simulations of two four-interceptor cooperative scenario are carried out to verify the validity of the proposed cooperative guidance law. The simulation results reflect that all the four interceptors can reach their own predictive interception points with specific approach angles simultaneously.
KW - Cooperative mid-course guidance law
KW - multiple-to-multiple interception
KW - salvo attack
KW - terminal handover constraints
UR - http://www.scopus.com/inward/record.url?scp=85047424621&partnerID=8YFLogxK
U2 - 10.1177/0954410018769182
DO - 10.1177/0954410018769182
M3 - Article
AN - SCOPUS:85047424621
SN - 0954-4100
VL - 233
SP - 1960
EP - 1976
JO - Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
JF - Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
IS - 6
ER -