Abstract
Considering a complete residuated lattice L as the lattice background, the concept of (preconcave, concave) L-convergence spaces via L-ordered co-Scott closed sets is introduced and its diagonal axioms are proposed. It is shown that concave L-convergence spaces are isomorphic to strong L-concave spaces in a categorical viewpoint. Also, it is proved that a preconcave L-convergence space satisfies the Kowalsky diagonal axiom if and only if it is concave, and an L-convergence space satisfies the Fischer diagonal axiom if and only if it is concave.
Original language | English |
---|---|
Pages (from-to) | 61-80 |
Number of pages | 20 |
Journal | Iranian Journal of Fuzzy Systems |
Volume | 21 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- diagonal axiom
- L-concave space
- L-convergence space
- L-convex space
- L-ordered co-Scott closed set