Contact Force Prediction of Teleoperation System Based on Kalman Filter Algorithm

Zhen Chen, Guibin Li, Jian Li, Xiangdong Liu, Liwei Shao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We target the problem of providing 5G network connectivity in rural zones by means of Base Stations (BSs) carried by Unmanned Aerial Vehicles (UAVs). Our goal is to schedule the UAVs missions to: i) limit the amount of energy consumed by each UAV, ii) ensure the coverage of selected zones over the territory, ii) decide where and when each UAV has to be recharged in a ground site, iii) deal with the amount of energy provided by Solar Panels (SPs) and batteries installed in each ground site. We then formulate the RURALPLAN optimization problem, a variant of the unsplittable multicommodity flow problem defined on a multiperiod graph. After detailing the objective function and the constraints, we solve RURALPLAN in a realistic scenario. Results show that RURALPLAN is able to outperform a solution ensuring coverage but not considering the energy management of the UAVs.

Original languageEnglish
Title of host publicationProceedings of the 37th Chinese Control Conference, CCC 2018
EditorsXin Chen, Qianchuan Zhao
PublisherIEEE Computer Society
Pages8394-8399
Number of pages6
ISBN (Electronic)9789881563941
DOIs
Publication statusPublished - 5 Oct 2018
Event37th Chinese Control Conference, CCC 2018 - Wuhan, China
Duration: 25 Jul 201827 Jul 2018

Publication series

NameChinese Control Conference, CCC
Volume2018-July
ISSN (Print)1934-1768
ISSN (Electronic)2161-2927

Conference

Conference37th Chinese Control Conference, CCC 2018
Country/TerritoryChina
CityWuhan
Period25/07/1827/07/18

Keywords

  • Contact Force Prediction
  • Kalman Filter
  • Teleoperation System
  • Workspace Mapping

Fingerprint

Dive into the research topics of 'Contact Force Prediction of Teleoperation System Based on Kalman Filter Algorithm'. Together they form a unique fingerprint.

Cite this