TY - JOUR
T1 - Construction of NiCo-metaphosphate/hydroxide with synergistic heterostructure for sustainable biomass electro-oxidation
AU - Xiong, Jie
AU - Wang, Feng
AU - Zhu, Botao
AU - You, Kaixuan
AU - Wu, Shuo
AU - Jin, Peng
AU - Feng, Lai
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024
Y1 - 2024
N2 - Coupling electrooxidation of 2,5-bis(hydroxymethyl)furan (BHMFOR) with electroreduction of 5-hydroxymethylfurfural (HMFRR) might be a feasible approach towards the sustainable synthesis of value-added chemicals. Rational design of efficient and durable catalysts is crucial to this novel strategy. Herein, we demonstrate that the NiCo phosphide (NiCoP) nanosheet could be anodically reconstructed into a hydroxide-modified metaphosphate nanosheet (i.e., NiCoPi/Oi). The NiCoPi/Oi exhibits excellent BHMFOR performance with a low onset potential of 1.23 VRHE to yield 2,5-furandicarboxylic acid (FDCA) with nearly quantitative faradaic efficiency (FE), high selectivity (99%) and robust stability (for 10 cycles). A series of in situ spectroscopic analyses reveal dynamic cycles of NiOOH/Ni(OH)2 on the catalyst surface under the BHMFOR conditions, verifying an indirect oxidation pathway. As demonstrated by density functional theory (DFT) calculations, benefiting from the synergistic effect of heterostructures, the NiCoPi/Ni(OH)2 can enhance the adsorption of BHMF, hence promoting the BHMFOR through the indirect pathway. Furthermore, an electrode pair of NiCoP//NiCoPi/Oi is employed for the electrolysis of HMFRR/BHMFOR with graded electrolytes, fulfilling the concurrent synthesis of BHMF and FDCA with a combined FE of 134%. Our work thus provides new insights into catalyst design for biomass upgrading as well as a sustainable strategy for an overall conversion from HMF to FDCA.
AB - Coupling electrooxidation of 2,5-bis(hydroxymethyl)furan (BHMFOR) with electroreduction of 5-hydroxymethylfurfural (HMFRR) might be a feasible approach towards the sustainable synthesis of value-added chemicals. Rational design of efficient and durable catalysts is crucial to this novel strategy. Herein, we demonstrate that the NiCo phosphide (NiCoP) nanosheet could be anodically reconstructed into a hydroxide-modified metaphosphate nanosheet (i.e., NiCoPi/Oi). The NiCoPi/Oi exhibits excellent BHMFOR performance with a low onset potential of 1.23 VRHE to yield 2,5-furandicarboxylic acid (FDCA) with nearly quantitative faradaic efficiency (FE), high selectivity (99%) and robust stability (for 10 cycles). A series of in situ spectroscopic analyses reveal dynamic cycles of NiOOH/Ni(OH)2 on the catalyst surface under the BHMFOR conditions, verifying an indirect oxidation pathway. As demonstrated by density functional theory (DFT) calculations, benefiting from the synergistic effect of heterostructures, the NiCoPi/Ni(OH)2 can enhance the adsorption of BHMF, hence promoting the BHMFOR through the indirect pathway. Furthermore, an electrode pair of NiCoP//NiCoPi/Oi is employed for the electrolysis of HMFRR/BHMFOR with graded electrolytes, fulfilling the concurrent synthesis of BHMF and FDCA with a combined FE of 134%. Our work thus provides new insights into catalyst design for biomass upgrading as well as a sustainable strategy for an overall conversion from HMF to FDCA.
UR - http://www.scopus.com/inward/record.url?scp=85194176218&partnerID=8YFLogxK
U2 - 10.1039/d4ta02046d
DO - 10.1039/d4ta02046d
M3 - Article
AN - SCOPUS:85194176218
SN - 2050-7488
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
ER -