Computer vision for road imaging and pothole detection: a state-of-the-art review of systems and algorithms

Nachuan Ma, Jiahe Fan, Wenshuo Wang, Jin Wu, Yu Jiang, Lihua Xie, Rui Fan*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

50 Citations (Scopus)

Abstract

Computer vision algorithms have been utilized for 3-D road imaging and pothole detection for over two decades. Nonetheless, there is a lack of systematic survey articles on state-of-the-art (SoTA) computer vision techniques, especially deep learning models, developed to tackle these problems. This article first introduces the sensing systems employed for 2-D and 3-D road data acquisition, including camera(s), laser scanners and Microsoft Kinect. It then comprehensively reviews the SoTA computer vision algorithms, including (1) classical 2-D image processing, (2) 3-D point cloud modelling and segmentation and (3) machine/deep learning, developed for road pothole detection. The article also discusses the existing challenges and future development trends of computer vision-based road pothole detection approaches: classical 2-D image processing-based and 3-D point cloud modelling and segmentation-based approaches have already become history; and convolutional neural networks (CNNs) have demonstrated compelling road pothole detection results and are promising to break the bottleneck with future advances in self/un-supervised learning for multi-modal semantic segmentation. We believe that this survey can serve as practical guidance for developing the next-generation road condition assessment systems.

Original languageEnglish
Article numbertdac026
JournalTransportation Safety and Environment
Volume4
Issue number4
DOIs
Publication statusPublished - 1 Dec 2022
Externally publishedYes

Keywords

  • Computer vision
  • convolutional neural networks
  • deep learning
  • image processing
  • point cloud modelling
  • pothole detection
  • road imaging

Fingerprint

Dive into the research topics of 'Computer vision for road imaging and pothole detection: a state-of-the-art review of systems and algorithms'. Together they form a unique fingerprint.

Cite this