Computational analysis of cell dynamics in videos with hierarchical-pooled deep-convolutional features

Fengqian Pang, Heng Li, Yonggang Shi, Zhiwen Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Computational analysis of cellular appearance and its dynamics is used to investigate physiological properties of cells in biomedical research. In consideration of the great success of deep learning in video analysis, we first introduce two-stream convolutional networks (ConvNets) to automatically learn the biologically meaningful dynamics from raw live-cell videos. However, the two-stream ConvNets lack the ability to capture long-range video evolution. Therefore, a novel hierarchical pooling strategy is proposed to model the cell dynamics in a whole video, which is composed of trajectory pooling for short-term dynamics and rank pooling for long-range ones. Experimental results demonstrate that the proposed pipeline effectively captures the spatiotemporal dynamics from the raw live-cell videos and outperforms existing methods on our cell video database.

Original languageEnglish
Pages (from-to)934-953
Number of pages20
JournalJournal of Computational Biology
Volume25
Issue number8
DOIs
Publication statusPublished - Aug 2018

Keywords

  • Cell Dynamics
  • Deep Convolutional Features
  • Deep Convolutional Networks
  • Hierarchical Pooling.

Fingerprint

Dive into the research topics of 'Computational analysis of cell dynamics in videos with hierarchical-pooled deep-convolutional features'. Together they form a unique fingerprint.

Cite this