TY - JOUR
T1 - Comprehensive evaluation of low-temperature oxidation characteristics of low-rank bituminous coal and oil shale
AU - Liu, Qiqi
AU - Liu, Chuang
AU - Ma, Jiayu
AU - Liu, Zhenyi
AU - Sun, Lulu
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/5/1
Y1 - 2024/5/1
N2 - The coexistence of coal and oil shale mining conditions exacerbates the complexity of coal spontaneous combustion (CSC) prevention, so conducting in-depth research on the spontaneous combustion characteristics of coal, oil shale, and their mixed samples is necessary. A programmed heating system simulated the low-temperature oxidation process of bituminous coal and oil shale under different air volumes. It was found that CO concentration, C2H4 concentration, and Graham's fire coefficient (R1, R2) can be used as indicator gases to predict the CSC process. Compared with oil shale and mixed samples, bituminous coal has a higher CO production rate, oxygen consumption rate, heat release intensity, and lower apparent activation energy during the slow oxidation stage. Meanwhile, bituminous coal also has lower peak values of minimum float coal thickness, lower limit oxygen concentration, and maximal air leakage intensity, which means that bituminous coal in the goaf is more prone to oxidation. However, the abundant free hydrogen bonds in oil shale can stabilize the hydrogen-deficient functional groups of bituminous coal, which weakens the oxidation ability of the mixed sample during the accelerated oxidation stage. In addition, the increased air volume fraction increases the oxygen adsorption efficiency of the mixed sample throughout the low-temperature oxidation process, which means that the M70 sample has a higher CSC risk. The results have enriched the research on the spontaneous combustion characteristics of coal, oil shale, and mixed samples, which may strengthen the management and control of CSC in coal and oil shale co-mining mines.
AB - The coexistence of coal and oil shale mining conditions exacerbates the complexity of coal spontaneous combustion (CSC) prevention, so conducting in-depth research on the spontaneous combustion characteristics of coal, oil shale, and their mixed samples is necessary. A programmed heating system simulated the low-temperature oxidation process of bituminous coal and oil shale under different air volumes. It was found that CO concentration, C2H4 concentration, and Graham's fire coefficient (R1, R2) can be used as indicator gases to predict the CSC process. Compared with oil shale and mixed samples, bituminous coal has a higher CO production rate, oxygen consumption rate, heat release intensity, and lower apparent activation energy during the slow oxidation stage. Meanwhile, bituminous coal also has lower peak values of minimum float coal thickness, lower limit oxygen concentration, and maximal air leakage intensity, which means that bituminous coal in the goaf is more prone to oxidation. However, the abundant free hydrogen bonds in oil shale can stabilize the hydrogen-deficient functional groups of bituminous coal, which weakens the oxidation ability of the mixed sample during the accelerated oxidation stage. In addition, the increased air volume fraction increases the oxygen adsorption efficiency of the mixed sample throughout the low-temperature oxidation process, which means that the M70 sample has a higher CSC risk. The results have enriched the research on the spontaneous combustion characteristics of coal, oil shale, and mixed samples, which may strengthen the management and control of CSC in coal and oil shale co-mining mines.
KW - Activation energy
KW - Air volume
KW - Characteristic parameters
KW - Coal
KW - Limiting parameters
KW - Oil shale
UR - http://www.scopus.com/inward/record.url?scp=85187694649&partnerID=8YFLogxK
U2 - 10.1016/j.energy.2024.131001
DO - 10.1016/j.energy.2024.131001
M3 - Article
AN - SCOPUS:85187694649
SN - 0360-5442
VL - 294
JO - Energy
JF - Energy
M1 - 131001
ER -