Abstract
For an odd prime p, let q=pm, and denote Tre m the trace function from Fq onto Fpe , where e is a divisor of m. For a positive integer t and a∈Fpe , let Da={(x1,x2,…,xt)∈Fq t∖{(0,0,…,0)}:Tre m(x1+x2+⋯+xt)=a}, and define a p-ary linear code CDa as CDa ={c(x1,x2,…,xt):(x1,x2,…,xt)∈Fq t}, where c(x1,x2,…,xt)=(Tr1 m(x1d1 2+x2d2 2+⋯+xtdt 2))(d1,d2,…,dt)∈Da . The complete weight enumerators of linear codes CDa will be presented for any divisor e of m and a∈Fpe , and this new result generalizes that of both Ahn et al. (2017) and Yang et al. (2017).
Original language | English |
---|---|
Pages (from-to) | 1959-1972 |
Number of pages | 14 |
Journal | Discrete Mathematics |
Volume | 341 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2018 |
Keywords
- Complete weight enumerators
- Defining set
- Exponential sum
- Gauss sum
- Trace function
Fingerprint
Dive into the research topics of 'Complete weight enumerators of a new class of linear codes'. Together they form a unique fingerprint.Cite this
Liu, Y., & Liu, Z. (2018). Complete weight enumerators of a new class of linear codes. Discrete Mathematics, 341(7), 1959-1972. https://doi.org/10.1016/j.disc.2018.03.025