Complete weight enumerators of a new class of linear codes

Yiwei Liu, Zihui Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

For an odd prime p, let q=pm, and denote Tre m the trace function from Fq onto Fpe , where e is a divisor of m. For a positive integer t and a∈Fpe , let Da={(x1,x2,…,xt)∈Fq t∖{(0,0,…,0)}:Tre m(x1+x2+⋯+xt)=a}, and define a p-ary linear code CDa as CDa ={c(x1,x2,…,xt):(x1,x2,…,xt)∈Fq t}, where c(x1,x2,…,xt)=(Tr1 m(x1d1 2+x2d2 2+⋯+xtdt 2))(d1,d2,…,dt)∈Da . The complete weight enumerators of linear codes CDa will be presented for any divisor e of m and a∈Fpe , and this new result generalizes that of both Ahn et al. (2017) and Yang et al. (2017).

Original languageEnglish
Pages (from-to)1959-1972
Number of pages14
JournalDiscrete Mathematics
Volume341
Issue number7
DOIs
Publication statusPublished - Jul 2018

Keywords

  • Complete weight enumerators
  • Defining set
  • Exponential sum
  • Gauss sum
  • Trace function

Fingerprint

Dive into the research topics of 'Complete weight enumerators of a new class of linear codes'. Together they form a unique fingerprint.

Cite this