TY - JOUR
T1 - Comparison of physically based constitutive models characterizing armor steel over wide temperature and strain rate ranges
AU - Xu, Zejian
AU - Huang, Fenglei
PY - 2012/1
Y1 - 2012/1
N2 - Both descriptive and predictive capabilities of five physically based constitutive models (PB, NNL, ZA, VA, and RK) are investigated and compared systematically, in characterizing plastic behavior of the 603 steel at temperatures ranging from 288 to 873 K, and strain rates ranging from 0.001 to 4500 s -1. Determination of the constitutive parameters is introduced in detail for each model. Validities of the established models are checked by strain rate jump tests performed under different loading conditions. The results show that the RK and NNL models have better performance in the description of material behavior, especially the work-hardening effect, while the PB and VA models predict better. The inconsistency that is observed between the capabilities of description and prediction of the models indicates the existence of the minimum number of required fitting data, reflecting the degree of a model's requirement for basic data in parameter calibration. It is also found that the description capability of a model is dependent to a large extent on both its form and the number of its constitutive parameters, while the precision of prediction relies largely on the performance of description. In the selection of constitutive models, the experimental data and the constitutive models should be considered synthetically to obtain a better efficiency in material behavior characterization.
AB - Both descriptive and predictive capabilities of five physically based constitutive models (PB, NNL, ZA, VA, and RK) are investigated and compared systematically, in characterizing plastic behavior of the 603 steel at temperatures ranging from 288 to 873 K, and strain rates ranging from 0.001 to 4500 s -1. Determination of the constitutive parameters is introduced in detail for each model. Validities of the established models are checked by strain rate jump tests performed under different loading conditions. The results show that the RK and NNL models have better performance in the description of material behavior, especially the work-hardening effect, while the PB and VA models predict better. The inconsistency that is observed between the capabilities of description and prediction of the models indicates the existence of the minimum number of required fitting data, reflecting the degree of a model's requirement for basic data in parameter calibration. It is also found that the description capability of a model is dependent to a large extent on both its form and the number of its constitutive parameters, while the precision of prediction relies largely on the performance of description. In the selection of constitutive models, the experimental data and the constitutive models should be considered synthetically to obtain a better efficiency in material behavior characterization.
UR - http://www.scopus.com/inward/record.url?scp=84255167791&partnerID=8YFLogxK
U2 - 10.1088/0965-0393/20/1/015005
DO - 10.1088/0965-0393/20/1/015005
M3 - Article
AN - SCOPUS:84255167791
SN - 0965-0393
VL - 20
JO - Modelling and Simulation in Materials Science and Engineering
JF - Modelling and Simulation in Materials Science and Engineering
IS - 1
M1 - 015005
ER -