Combined Impact of the Lewis Number and Thermal Expansion on Laminar Flame Flashback in Tubes

Kai Huang, Louis Benteux, Wenhu Han, Damir M. Valiev*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The understanding of the boundary layer flame flashback (BLF) has considerably improved in recent decades, driven by the increasing focus on clean energy and the need to address the operational issues associated with flashback. This study investigates the influence of the Lewis number (Le) on symmetric flame shapes under the critical conditions for a laminar boundary layer flashback in cylindrical tubes. It has been found that the transformation of the flame shape from a mushroom to a tulip happens in a tube of a given radius, as the thermal expansion coefficient and Le are modified. A smaller Lewis number results in a local increase in the burning rate at the flame tip, with the flame being able to propagate closer to the wall, which significantly increases the flashback propensity, in line with previous findings. In cases with a Lewis number smaller than unity, a higher thermal expansion results in a flame propagation happening closer to the wall, thus facing a weaker oncoming flow and, consequently, becoming more prone to flashback. For Le > 1, the effect of the increase in the thermal expansion coefficient on the flashback tendency is much less pronounced.

Original languageEnglish
Article number28
JournalFluids
Volume9
Issue number1
DOIs
Publication statusPublished - Jan 2024

Keywords

  • Lewis number effect
  • boundary layer flashback
  • laminar flame
  • thermal gas expansion

Fingerprint

Dive into the research topics of 'Combined Impact of the Lewis Number and Thermal Expansion on Laminar Flame Flashback in Tubes'. Together they form a unique fingerprint.

Cite this