TY - JOUR
T1 - Colloidal Synthesis of Semiconductor Films for Efficient Photoelectrochemical Hydrogen Generation
AU - Chen, Akang
AU - Li, Xinyuan
AU - Wang, Jiale
AU - Zhang, Jiatao
N1 - Publisher Copyright:
Copyright © 2023 Akang Chen et al.
PY - 2023
Y1 - 2023
N2 - The semiconductor-based photoanodes have shown great potential on photoelectrochemical (PEC) hydrogen generation. Compared to the pristine semiconductor, photoanodes fabricated with doped semiconductors exhibit modulated bandgap structure and enhanced charge separation efficiency, demonstrating improved optoelectronic properties. In this work, we develop a colloidal cation exchange (CE) strategy on versatile synthesis of heterovalent doped chalcogenide semiconductor thin films with high surface roughness. Using Ag-doped CdSe (CdSe:Ag) thin films as an example, the organized centimeter-scale CdSe:Ag films with nanometer-scale thickness (thickness around 80 nm, length × width around 1.5 cm × 1.2 cm) exhibit enhanced optical absorbance ability and charge carrier density by tuning the energy levels of conduction and valence bands as well as improved electrical conductivity by Ag dopants compared to the pristine CdSe film obtained by the vapor-phase vacuum deposition strategy. In the meantime, the surface roughness of the as-prepared semiconductor thin films is also increased with abundantly exposed active sites to facilitate accessibility to water for hydrogen generation and suppress photogenerated carrier recombination. The CdSe:Ag film photoanodes exhibit superb PEC hydrogen generation performance with a photocurrent density of 0.56 mA/cm2 at 1.23 V versus reversible hydrogen electrode, which is nearly 3 times higher than the pristine CdSe film. This work provides a new strategy on colloidal synthesis of photoelectrodes with modulated heterovalent doping and surface roughness for PEC applications.
AB - The semiconductor-based photoanodes have shown great potential on photoelectrochemical (PEC) hydrogen generation. Compared to the pristine semiconductor, photoanodes fabricated with doped semiconductors exhibit modulated bandgap structure and enhanced charge separation efficiency, demonstrating improved optoelectronic properties. In this work, we develop a colloidal cation exchange (CE) strategy on versatile synthesis of heterovalent doped chalcogenide semiconductor thin films with high surface roughness. Using Ag-doped CdSe (CdSe:Ag) thin films as an example, the organized centimeter-scale CdSe:Ag films with nanometer-scale thickness (thickness around 80 nm, length × width around 1.5 cm × 1.2 cm) exhibit enhanced optical absorbance ability and charge carrier density by tuning the energy levels of conduction and valence bands as well as improved electrical conductivity by Ag dopants compared to the pristine CdSe film obtained by the vapor-phase vacuum deposition strategy. In the meantime, the surface roughness of the as-prepared semiconductor thin films is also increased with abundantly exposed active sites to facilitate accessibility to water for hydrogen generation and suppress photogenerated carrier recombination. The CdSe:Ag film photoanodes exhibit superb PEC hydrogen generation performance with a photocurrent density of 0.56 mA/cm2 at 1.23 V versus reversible hydrogen electrode, which is nearly 3 times higher than the pristine CdSe film. This work provides a new strategy on colloidal synthesis of photoelectrodes with modulated heterovalent doping and surface roughness for PEC applications.
UR - http://www.scopus.com/inward/record.url?scp=85160045211&partnerID=8YFLogxK
U2 - 10.34133/energymatadv.0028
DO - 10.34133/energymatadv.0028
M3 - Article
AN - SCOPUS:85160045211
SN - 2692-7640
VL - 4
JO - Energy Material Advances
JF - Energy Material Advances
M1 - 0028
ER -