Collision-probability-based hopping trajectory optimization on hazardous terrain of small bodies

Chuncheng Zhao, Shengying Zhu*, Pierluigi Di Lizia

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

This paper studies the safe motion of a hopping rover on hazardous terrains of small bodies in the presence of initial state errors and dynamic parameter uncertainties. The collision probability is adopted to optimize the hopping trajectory. Firstly, the hazardous terrain is characterized by the least square median method, and the feasible path point zone is defined for hopping motion. Meanwhile, the hopping trajectory optimization is converted into sequence path point planning and optimal trajectory design problems based on the classical path planning algorithm. Then, considering the effects of errors and uncertainties, a performance index is derived to design a continuous hopping trajectory of sequence path points. Taking the collision probability as an index to indicate safety, local path points are optimized through path point decomposition and replacement strategy. Therefore, a collision-probability-based continuous optimal hopping trajectory can be generated to realize safe and precise motion. Finally, with the simulated hazardous terrain based on the small body 433 Eros, the effectiveness of the proposed method is verified by numerical analysis.

Original languageEnglish
Pages (from-to)4877-4894
Number of pages18
JournalAdvances in Space Research
Volume71
Issue number11
DOIs
Publication statusPublished - 1 Jun 2023

Keywords

  • Collision probability
  • Hazardous terrain
  • Hopping trajectory optimization
  • Path point planning
  • Surface exploration

Fingerprint

Dive into the research topics of 'Collision-probability-based hopping trajectory optimization on hazardous terrain of small bodies'. Together they form a unique fingerprint.

Cite this