Classification of spacelike conformal Einstein hypersurfaces in Lorentzian space Rn+1 1

Yayun Chen, Tongzhu Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Let f: Mn → Rn+1 1 be an n-dimensional umbilic-free spacelike hypersurface in the (n + 1)-dimensional Lorentzian space Rn+1 1 with an induced metric I. Let I I be the second fundamental form and H the mean curvature of f. One can define the conformal metric g =n n−1(∥I I∥2 − nH2)I on f (Mn), which is invariant under the conformal transformation group of Rn+1 1. If the Ricci curvature of g is constant, then the spacelike hypersurface f is called a conformal Einstein hypersurface. In this paper, we completely classify the n-dimensional spacelike conformal Einstein hypersurfaces up to a conformal transformation of Rn+1 1.

Original languageEnglish
Pages (from-to)23247-23271
Number of pages25
JournalAIMS Mathematics
Volume8
Issue number10
DOIs
Publication statusPublished - 2023

Keywords

  • conformal Einstein hypersurface
  • conformal metric
  • conformal sectional curvature
  • conformal transformation group

Fingerprint

Dive into the research topics of 'Classification of spacelike conformal Einstein hypersurfaces in Lorentzian space Rn+1 1'. Together they form a unique fingerprint.

Cite this