Classification of Encrypted Traffic with Second-Order Markov Chains and Application Attribute Bigrams

Meng Shen, Mingwei Wei, Liehuang Zhu*, Mingzhong Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

172 Citations (Scopus)

Abstract

With a profusion of network applications, traffic classification plays a crucial role in network management and policy-based security control. The widely used encryption transmission protocols, such as the secure socket layer/transport layer security (SSL/TLS) protocols, lead to the failure of traditional payload-based classification methods. Existing methods for encrypted traffic classification cannot achieve high discrimination accuracy for applications with similar fingerprints. In this paper, we propose an attribute-aware encrypted traffic classification method based on the second-order Markov Chains. We start by exploring approaches that can further improve the performance of existing methods in terms of discrimination accuracy, and make promising observations that the application attribute bigram, which consists of the certificate packet length and the first application data size in SSL/TLS sessions, contributes to application discrimination. To increase the diversity of application fingerprints, we develop a new method by incorporating the attribute bigrams into the second-order homogeneous Markov chains. Extensive evaluation results show that the proposed method can improve the classification accuracy by 29% on the average compared with the state-of-the-art Markov-based method.

Original languageEnglish
Article number7898439
Pages (from-to)1830-1843
Number of pages14
JournalIEEE Transactions on Information Forensics and Security
Volume12
Issue number8
DOIs
Publication statusPublished - Aug 2017

Keywords

  • Encrypted traffic classification
  • SSL/TLS
  • application data
  • certificate
  • second-order Markov chain

Fingerprint

Dive into the research topics of 'Classification of Encrypted Traffic with Second-Order Markov Chains and Application Attribute Bigrams'. Together they form a unique fingerprint.

Cite this