TY - GEN
T1 - Causal Intervention for Abstractive Related Work Generation
AU - Liu, Jiachang
AU - Zhang, Qi
AU - Shi, Chongyang
AU - Naseem, Usman
AU - Wang, Shoujin
AU - Hu, Liang
AU - Tsang, Ivor W.
N1 - Publisher Copyright:
© 2023 Association for Computational Linguistics.
PY - 2023
Y1 - 2023
N2 - Abstractive related work generation has attracted increasing attention in generating coherent related work that helps readers grasp the current research. However, most existing models ignore the inherent causality during related work generation, leading to spurious correlations which downgrade the models' generation quality and generalizability. In this study, we argue that causal intervention can address such limitations and improve the quality and coherence of generated related work. To this end, we propose a novel Causal Intervention Module for Related Work Generation (CaM) to effectively capture causalities in the generation process. Specifically, we first model the relations among the sentence order, document (reference) correlations, and transitional content in related work generation using a causal graph. Then, to implement causal interventions and mitigate the negative impact of spurious correlations, we use do-calculus to derive ordinary conditional probabilities and identify causal effects through CaM. Finally, we subtly fuse CaM with Transformer to obtain an end-to-end related work generation framework. Extensive experiments on two real-world datasets show that CaM can effectively promote the model to learn causal relations and thus produce related work of higher quality and coherence.
AB - Abstractive related work generation has attracted increasing attention in generating coherent related work that helps readers grasp the current research. However, most existing models ignore the inherent causality during related work generation, leading to spurious correlations which downgrade the models' generation quality and generalizability. In this study, we argue that causal intervention can address such limitations and improve the quality and coherence of generated related work. To this end, we propose a novel Causal Intervention Module for Related Work Generation (CaM) to effectively capture causalities in the generation process. Specifically, we first model the relations among the sentence order, document (reference) correlations, and transitional content in related work generation using a causal graph. Then, to implement causal interventions and mitigate the negative impact of spurious correlations, we use do-calculus to derive ordinary conditional probabilities and identify causal effects through CaM. Finally, we subtly fuse CaM with Transformer to obtain an end-to-end related work generation framework. Extensive experiments on two real-world datasets show that CaM can effectively promote the model to learn causal relations and thus produce related work of higher quality and coherence.
UR - http://www.scopus.com/inward/record.url?scp=85183296624&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85183296624
T3 - Findings of the Association for Computational Linguistics: EMNLP 2023
SP - 2148
EP - 2159
BT - Findings of the Association for Computational Linguistics
PB - Association for Computational Linguistics (ACL)
T2 - 2023 Findings of the Association for Computational Linguistics: EMNLP 2023
Y2 - 6 December 2023 through 10 December 2023
ER -