Categorical properties of L-Fuzzifying convergence spaces

Bin Pang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)

Abstract

In this paper, categorical properties of L-fuzzifying convergence spaces are investigated. It is shown that (1) the category L-FYC of L-fuzzifying convergence spaces is a strong topological universe; (2) the category L-FYKC of L-fuzzifying Kent convergence spaces, as a bireflective and bicoreflective subcategory of L-FYC, is also a strong topological universe; (3) the category L-FYLC of L-fuzzifying limit spaces, as a bireflective subcategory of L-FYKC, is a topological universe.

Original languageEnglish
Pages (from-to)4021-4036
Number of pages16
JournalFilomat
Volume32
Issue number11
DOIs
Publication statusPublished - 2018

Keywords

  • Cartesian-closedness
  • Fuzzy convergence structure
  • Fuzzy filter
  • Fuzzy topology

Fingerprint

Dive into the research topics of 'Categorical properties of L-Fuzzifying convergence spaces'. Together they form a unique fingerprint.

Cite this