Case study of aeroengine parameter prediction based on MIV and ELM

Yingshun Li, Fuyang Wang, Ximing Sun, Xiaojian Yi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Aiming at the problems existing in the current prediction methods of aeroengine parameters, such as the difficulty in parameter selection, the slow training speed and the tendency to fall into local optimal solution of traditional BP neural network algorithm, this paper proposes the prediction method of aeroengine performance parameters based on mean influence value (MIV) algorithm and extreme learning machine (ELM). Firstly, we preprocess the sample data. Secondly, screening out the main parameters that affect the predicted parameters by MIV algorithm, attribute reduction is realized, the result of attribute reduction is taken as the input to train an ELM. Finally, using the test samples to do the test. The testing results show that the algorithm is faster and more accurate in parameter prediction.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
EditorsChuan Li, Shaohui Zhang, Jianyu Long, Diego Cabrera, Ping Ding
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages56-61
Number of pages6
ISBN (Electronic)9781728101996
DOIs
Publication statusPublished - Aug 2019
Externally publishedYes
Event2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019 - Beijing, China
Duration: 15 Aug 201917 Aug 2019

Publication series

NameProceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019

Conference

Conference2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
Country/TerritoryChina
CityBeijing
Period15/08/1917/08/19

Keywords

  • Aeroengine
  • ELM
  • MIV

Fingerprint

Dive into the research topics of 'Case study of aeroengine parameter prediction based on MIV and ELM'. Together they form a unique fingerprint.

Cite this