Brain age estimation using multi-feature-based networks

Xia Liu, Iman Beheshti, Weihao Zheng, Yongchao Li, Shan Li, Ziyang Zhao, Zhijun Yao*, Bin Hu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 13
  • Captures
    • Readers: 16
see details

Abstract

Studying brain aging improves our understanding in differentiating typical and atypical aging. Directly utilizing traditional morphological features for brain age estimation did not show significant performance in healthy controls (HCs), which may be due to the negligence of the information of structural similarities among cortical regions. For this issue, the multi-feature-based network (MFN) built upon morphological features can be employed to describe these similarities. Based on this, we hypothesized that the MFN is more efficient and robust than traditional morphological features in brain age estimating. In this work, we used six different types of morphological features (i.e., cortical volume, cortical thickness, curvature index, folding index, local gyrification index, and surface area) to build individual MFN for brain age estimation. The efficacy of MFN was estimated on 2501 HCs with T1-weighted structural magnetic resonance imaging (sMRI) data and compared with traditional morphological features. We attained a mean absolute error (MAE) of 3.73 years using the proposed method on an independent test set, whereas a mean absolute error of 5.30 years was derived from morphological features. Our experimental results demonstrated that the MFN is an efficient and robust metric for estimating brain age.

Original languageEnglish
Article number105285
JournalComputers in Biology and Medicine
Volume143
DOIs
Publication statusPublished - Apr 2022
Externally publishedYes

Keywords

  • Brain age
  • Multi-feature-based networks
  • Support vector regression
  • sMRI

Fingerprint

Dive into the research topics of 'Brain age estimation using multi-feature-based networks'. Together they form a unique fingerprint.

Cite this

Liu, X., Beheshti, I., Zheng, W., Li, Y., Li, S., Zhao, Z., Yao, Z., & Hu, B. (2022). Brain age estimation using multi-feature-based networks. Computers in Biology and Medicine, 143, Article 105285. https://doi.org/10.1016/j.compbiomed.2022.105285