Abstract
Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in d-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal.
Original language | English |
---|---|
Pages (from-to) | 11044-11050 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 5 |
Issue number | 22 |
DOIs | |
Publication status | Published - 21 Nov 2013 |