Bifurcation of pulsation instability in one-dimensional H2- O2 detonation with detailed reaction mechanism

Wenhu Han, Wenjin Ma, Chengeng Qian, Jennifer Wen, Cheng Wang

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Classical modes of one-dimensional (1D) detonation characterized by a simplified reaction model are reproduced by using a real chemical kinetics for the H2-O2 system with argon dilution. As Ar dilution is varied, the bifurcation points of pulsating instability are identified and a formed bifurcation diagram is compared with that obtained by the one-step reaction model. Eventually, the numerical results demonstrate that, for real detonations with detailed chemistry, the criterion of Ng et al. works well on prediction of the 1D detonation instability. Furthermore, the detonability limits are found respectively at low and high Ar dilutions. Above the high Ar dilution limit, detonations decays to the minimum level where long autoignition time and small heat release rate make reestablishment impossible for both 1D and 2D simulations. However, below the low Ar dilution limit, a 1D detonation cannot be sustained due to high instability, while the corresponding cellular detonation can propagate sustainably due to the role of transverse instability.

Original languageEnglish
Article number103202
JournalPhysical Review Fluids
Volume4
Issue number10
DOIs
Publication statusPublished - 29 Oct 2019

Fingerprint

Dive into the research topics of 'Bifurcation of pulsation instability in one-dimensional H2- O2 detonation with detailed reaction mechanism'. Together they form a unique fingerprint.

Cite this