TY - JOUR
T1 - B-generalized (α,β)-derivations and b-generalized (α,β)-biderivations of prime rings
AU - De Filippis, Vincenzo
AU - Wei, Feng
N1 - Publisher Copyright:
© 2018, Mathematical Society of the Rep. of China. All rights reserved.
PY - 2018/4
Y1 - 2018/4
N2 - Let R be a ring, α and β two automorphisms of R. An additive mapping d: R → R is called an (α, β) -derivation if d(xy) = d(x) α (y) + β (x) d(y) for any x,y ∈ R. An additive mapping G: R → R is called a generalized (α, β) -derivation if G(xy) = G(x) α (y) + β (x) d(y) for any x,y ∈ R, where d is an (α, β) -derivation of R. In this paper we introduce the definitions of b -generalized (α, β) -derivation and b -generalized (α, β) -biderivation. More precisely, let d: R → R and G: R → R be two additive mappings on R, α and β automorphisms of R and b ∈ R. G is called a b -generalized (α, β) -derivation of R, if G(xy) = G(x) α (y) + bβ (x) d(y) for any x,y ∈ R. Let now D: R × R → R be a biadditive mapping. The biadditive mapping Δ: R × R → R is said to be a b -generalized (α, β) -biderivation of R if, for every x,y,z ∈ R, Δ(x,yz) = Δ(x,y) α (z) + bβ (y) D(x,z) and Δ(xy,z) = Δ(x,z) α (y) + bβ (x) D(y,z). Here we describe the form of any b -generalized (α, β) -biderivation of a prime ring.
AB - Let R be a ring, α and β two automorphisms of R. An additive mapping d: R → R is called an (α, β) -derivation if d(xy) = d(x) α (y) + β (x) d(y) for any x,y ∈ R. An additive mapping G: R → R is called a generalized (α, β) -derivation if G(xy) = G(x) α (y) + β (x) d(y) for any x,y ∈ R, where d is an (α, β) -derivation of R. In this paper we introduce the definitions of b -generalized (α, β) -derivation and b -generalized (α, β) -biderivation. More precisely, let d: R → R and G: R → R be two additive mappings on R, α and β automorphisms of R and b ∈ R. G is called a b -generalized (α, β) -derivation of R, if G(xy) = G(x) α (y) + bβ (x) d(y) for any x,y ∈ R. Let now D: R × R → R be a biadditive mapping. The biadditive mapping Δ: R × R → R is said to be a b -generalized (α, β) -biderivation of R if, for every x,y,z ∈ R, Δ(x,yz) = Δ(x,y) α (z) + bβ (y) D(x,z) and Δ(xy,z) = Δ(x,z) α (y) + bβ (x) D(y,z). Here we describe the form of any b -generalized (α, β) -biderivation of a prime ring.
KW - Biderivation
KW - Generalized skew derivation
KW - Prime ring
UR - http://www.scopus.com/inward/record.url?scp=85045216217&partnerID=8YFLogxK
U2 - 10.11650/tjm/170903
DO - 10.11650/tjm/170903
M3 - Article
AN - SCOPUS:85045216217
SN - 1027-5487
VL - 22
SP - 313
EP - 323
JO - Taiwanese Journal of Mathematics
JF - Taiwanese Journal of Mathematics
IS - 2
ER -