AutoCE: An Accurate and Efficient Model Advisor for Learned Cardinality Estimation

Jintao Zhang, Chao Zhang*, Guoliang Li*, Chengliang Chai

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Cardinality estimation (CE) plays a crucial role in many database-related tasks such as query generation, cost estimation, and join ordering. Lately, we have witnessed the emergence of numerous learned CE models. However, no single CE model is invincible when it comes to the datasets with various data distributions. To facilitate data-intensive applications with accurate and efficient cardinality estimation, it is important to have an approach that can judiciously and efficiently select the most suitable CE model for an arbitrary dataset.In this paper, we study a new problem of selecting the best CE models for a variety of datasets. This problem is rather challenging as it is hard to capture the relationship from various datasets to the performance of disparate models. To address this problem, we propose a model advisor, named AutoCE, which can adaptively select the best model for a dataset. The main contribution of AutoCE is the learning-based model selection, where deep metric learning is used to learn a recommendation model and incremental learning is proposed to reduce the labeling overhead and improve the model robustness. We have integrated AutoCE into PostgreSQL and evaluated its impact on query optimization. The results showed that AutoCE achieved the best performance (27% better) and outperformed the baselines concerning accuracy (2.1x better) and efficacy (4.2x better).

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE 39th International Conference on Data Engineering, ICDE 2023
PublisherIEEE Computer Society
Pages2621-2633
Number of pages13
ISBN (Electronic)9798350322279
DOIs
Publication statusPublished - 2023
Event39th IEEE International Conference on Data Engineering, ICDE 2023 - Anaheim, United States
Duration: 3 Apr 20237 Apr 2023

Publication series

NameProceedings - International Conference on Data Engineering
Volume2023-April
ISSN (Print)1084-4627

Conference

Conference39th IEEE International Conference on Data Engineering, ICDE 2023
Country/TerritoryUnited States
CityAnaheim
Period3/04/237/04/23

Fingerprint

Dive into the research topics of 'AutoCE: An Accurate and Efficient Model Advisor for Learned Cardinality Estimation'. Together they form a unique fingerprint.

Cite this