TY - JOUR
T1 - Asymptotic behavior of classical solutions of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization
AU - Htwe, Myowin
AU - Pang, Peter Y.H.
AU - Wang, Yifu
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - We are concerned with the Keller–Segel–Navier–Stokes system {ρt+u·∇ρ=Δρ-∇·(ρS(x,ρ,c)∇c)-ρm,(x,t)∈Ω×(0,T),mt+u·∇m=Δm-ρm,(x,t)∈Ω×(0,T),ct+u·∇c=Δc-c+m,(x,t)∈Ω×(0,T),ut+(u·∇)u=Δu-∇P+(ρ+m)∇ϕ,∇·u=0,(x,t)∈Ω×(0,T)subject to the boundary condition (∇ ρ- ρS(x, ρ, c) ∇ c) · ν= ∇ m· ν= ∇ c· ν= 0 , u= 0 in a bounded smooth domain Ω⊂ R3. It is shown that this problem admits a global classical solution with exponential decay properties when S∈C2(Ω¯×[0,∞)2)3×3 satisfies | S(x, ρ, c) | ≤ CS for some CS> 0 , and the initial data satisfy certain smallness conditions.
AB - We are concerned with the Keller–Segel–Navier–Stokes system {ρt+u·∇ρ=Δρ-∇·(ρS(x,ρ,c)∇c)-ρm,(x,t)∈Ω×(0,T),mt+u·∇m=Δm-ρm,(x,t)∈Ω×(0,T),ct+u·∇c=Δc-c+m,(x,t)∈Ω×(0,T),ut+(u·∇)u=Δu-∇P+(ρ+m)∇ϕ,∇·u=0,(x,t)∈Ω×(0,T)subject to the boundary condition (∇ ρ- ρS(x, ρ, c) ∇ c) · ν= ∇ m· ν= ∇ c· ν= 0 , u= 0 in a bounded smooth domain Ω⊂ R3. It is shown that this problem admits a global classical solution with exponential decay properties when S∈C2(Ω¯×[0,∞)2)3×3 satisfies | S(x, ρ, c) | ≤ CS for some CS> 0 , and the initial data satisfy certain smallness conditions.
KW - Decay estimates
KW - Keller–Segel system
KW - Navier–Stokes
KW - Tensor-valued sensitivity
UR - http://www.scopus.com/inward/record.url?scp=85084922575&partnerID=8YFLogxK
U2 - 10.1007/s00033-020-01310-y
DO - 10.1007/s00033-020-01310-y
M3 - Article
AN - SCOPUS:85084922575
SN - 0044-2275
VL - 71
JO - Zeitschrift fur Angewandte Mathematik und Physik
JF - Zeitschrift fur Angewandte Mathematik und Physik
IS - 3
M1 - 90
ER -