Asymptotic behavior of classical solutions of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization

Myowin Htwe, Peter Y.H. Pang, Yifu Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

We are concerned with the Keller–Segel–Navier–Stokes system {ρt+u·∇ρ=Δρ-∇·(ρS(x,ρ,c)∇c)-ρm,(x,t)∈Ω×(0,T),mt+u·∇m=Δm-ρm,(x,t)∈Ω×(0,T),ct+u·∇c=Δc-c+m,(x,t)∈Ω×(0,T),ut+(u·∇)u=Δu-∇P+(ρ+m)∇ϕ,∇·u=0,(x,t)∈Ω×(0,T)subject to the boundary condition (∇ ρ- ρS(x, ρ, c) ∇ c) · ν= ∇ m· ν= ∇ c· ν= 0 , u= 0 in a bounded smooth domain Ω⊂ R3. It is shown that this problem admits a global classical solution with exponential decay properties when S∈C2(Ω¯×[0,∞)2)3×3 satisfies | S(x, ρ, c) | ≤ CS for some CS> 0 , and the initial data satisfy certain smallness conditions.

Original languageEnglish
Article number90
JournalZeitschrift fur Angewandte Mathematik und Physik
Volume71
Issue number3
DOIs
Publication statusPublished - 1 Jun 2020

Keywords

  • Decay estimates
  • Keller–Segel system
  • Navier–Stokes
  • Tensor-valued sensitivity

Fingerprint

Dive into the research topics of 'Asymptotic behavior of classical solutions of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization'. Together they form a unique fingerprint.

Cite this