Abstract
Designing catalysts with highly active, selectivity, and stability for electrocatalytic CO2 to formate is currently a severe challenge. Herein, we developed an electronic structure engineering on carbon nano frameworks embedded with nitrogen and sulfur asymmetrically dual-coordinated indium active sites toward the efficient electrocatalytic CO2 reduction reaction. As expected, atomically dispersed In-based catalysts with In-S1N3 atomic interface with asymmetrically coordinated exhibited high efficiency for CO2 reduction reaction (CO2RR) to formate. It achieved a maximum Faradaic efficiency (FE) of 94.3% towards formate generation at −0.8 V vs. reversible hydrogen electrode (RHE), outperforming that of catalysts with In-S2N2 and In-N4 atomic interface. And at a potential of −1.10 V vs. RHE, In-S1N3 achieves an impressive Faradaic efficiency of 93.7% in flow cell. The catalytic performance of In-S1N3 sites was confirmed to be enhanced through in-situ X-ray absorption near-edge structure (XANES) measurements under electrochemical conditions. Our discovery provides the guidance for performance regulation of main group metal catalysts toward CO2RR at atomic scale. (Figure presented.)
Original language | English |
---|---|
Journal | Nano Research |
DOIs | |
Publication status | Accepted/In press - 2024 |
Keywords
- CO reduction reaction
- asymmetrical coordination
- indium single-site catalyst
- main group metal
- structure–activity relationship