Anticipating Future Relations via Graph Growing for Action Prediction

Xinxiao Wu, Jianwei Zhao, Ruiqi Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Predicting actions from partially observed videos is challenging as the partial videos containing incomplete action executions have insufficient discriminative information for classification. Recent progress has been made through enriching the features of the observed video part or generating the features for the unobserved video part, but without explicitly modeling the fine-grained evolution of visual object relations over both space and time. In this paper, we investigate how the interaction and correlation between visual objects evolve and propose a graph growing method to anticipate future object relations from limited video observations for reliable action prediction. There are two tasks in our method. First, we work with spatial-temporal graph neural networks to reason object relations in the observed video part. Then, we synthesize the spatial-temporal relation representation for the unobserved video part via graph node generation and aggregation. These two tasks are jointly learned to enable the anticipated future relation representation informative to action prediction. Experimental results on two action video datasets demonstrate the effectiveness of our method.

Original languageEnglish
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages2952-2960
Number of pages9
ISBN (Electronic)9781713835974
Publication statusPublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: 2 Feb 20219 Feb 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume4A

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/02/219/02/21

Fingerprint

Dive into the research topics of 'Anticipating Future Relations via Graph Growing for Action Prediction'. Together they form a unique fingerprint.

Cite this