TY - JOUR
T1 - Analysis of the Ventilation Performance of a Solar Chimney Coupled to an Outdoor Wind and Indoor Heat Source
AU - Yue, Shuaikun
AU - Ge, Zhong
AU - Xu, Jian
AU - Xie, Jianbin
AU - Xie, Zhiyong
AU - Zhang, Songyuan
AU - Li, Jian
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/2
Y1 - 2023/2
N2 - The effects of different solar radiation intensities, heat flow density of indoor heat sources, outdoor wind speed, and the relative location of indoor heat sources on the natural ventilation performance of solar chimneys are investigated through three-dimensional numerical simulations. The mechanism of the mutual coupling of the solar chimney effect with the outdoor wind and indoor heat source heat plume is explored. The results of the study show that when the structural parameters of the solar chimney are the same, the heat flow density on the surface of the indoor heat source, the outdoor wind speed and the solar radiation intensity all have a gaining effect on the ventilation performance of the solar chimney and the effects of the three on the ventilation of the solar chimney promote each other, when the solar radiation intensity is 200 W/m2, the outdoor wind speed is 1.0 m/s, and the indoor heat source heat flow density increases from 0 to 1 500 W/m2, the solar chimney ventilation volume increases from 0.393 m3/s to 0.519 m3/s, the maximum value of the increase is 32.1%. In the other two cases, the maximum increase in solar chimney ventilation is 176.7% and 33.1%, respectively. Under the same conditions, solar chimney ventilation is optimal when the heat source is in the middle of the room. The presence of outdoor wind, however, affects the optimum design parameters of the solar chimney. Compared to the case where no outdoor wind is taken into account, the optimum inlet width of 0.2–0.3 m for the solar chimney no longer applies with outdoor wind, with the optimum value rising to 0.5 m.
AB - The effects of different solar radiation intensities, heat flow density of indoor heat sources, outdoor wind speed, and the relative location of indoor heat sources on the natural ventilation performance of solar chimneys are investigated through three-dimensional numerical simulations. The mechanism of the mutual coupling of the solar chimney effect with the outdoor wind and indoor heat source heat plume is explored. The results of the study show that when the structural parameters of the solar chimney are the same, the heat flow density on the surface of the indoor heat source, the outdoor wind speed and the solar radiation intensity all have a gaining effect on the ventilation performance of the solar chimney and the effects of the three on the ventilation of the solar chimney promote each other, when the solar radiation intensity is 200 W/m2, the outdoor wind speed is 1.0 m/s, and the indoor heat source heat flow density increases from 0 to 1 500 W/m2, the solar chimney ventilation volume increases from 0.393 m3/s to 0.519 m3/s, the maximum value of the increase is 32.1%. In the other two cases, the maximum increase in solar chimney ventilation is 176.7% and 33.1%, respectively. Under the same conditions, solar chimney ventilation is optimal when the heat source is in the middle of the room. The presence of outdoor wind, however, affects the optimum design parameters of the solar chimney. Compared to the case where no outdoor wind is taken into account, the optimum inlet width of 0.2–0.3 m for the solar chimney no longer applies with outdoor wind, with the optimum value rising to 0.5 m.
KW - indoor heat source
KW - natural ventilation
KW - solar chimney
KW - solar radiation
KW - ventilation volume
UR - http://www.scopus.com/inward/record.url?scp=85149317367&partnerID=8YFLogxK
U2 - 10.3390/app13042585
DO - 10.3390/app13042585
M3 - Article
AN - SCOPUS:85149317367
SN - 2076-3417
VL - 13
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 4
M1 - 2585
ER -