Abstract
A devastating crude oil vapor explosion accident, which killed 62 people and injured 136, occurred on November 22, 2013. It was one of the most disastrous vapor cloud explosion accidents that happened in Qingdao's storm drains in China. It was noted that blast overpressure and flying debris were the main causes of human deaths, personal injuries and structure damages. Two months after the accident, it was reported that there were three contentious issues in the investigation report. First issue was the discrepancy between the temperature of the crude oil vapor explosive limits which were measured by the investigation panel and the temperature reported by the local fire department. Second issue was the contradiction between the upper explosive limit and vapor pressure of the crude oil vapor. The last issue was the location of the ignition source which led to the explosion.In the present study some specific features of this accident and various causes led to the explosion, high casualties and severe damages were analyzed. Three contentious issues in the official investigation report were investigated and tested in detail. The first element tested was the explosive limits and limiting oxygen concentration of the crude oil vapor at different temperatures. Based on theoretical analysis and field investigations, the last two elements in the report were analyzed from multiple perspectives. Based on the TNO Multi-Energy model and PROBIT equations, damage probability of affected people at the leaking site was also estimated. The investigation concluded with a result that precautions need to be taken to prevent flammable gas explosions in the drainage systems. Key steps were explicitly discussed for improving the hazard identification and risk assessment of similar accidents in the future.
Original language | English |
---|---|
Pages (from-to) | 289-303 |
Number of pages | 15 |
Journal | Journal of Loss Prevention in the Process Industries |
Volume | 33 |
DOIs | |
Publication status | Published - 1 Jan 2015 |
Keywords
- Confined vapor cloud explosion
- Crude oil vapor
- Deflagration
- Detonation
- Urban storm drain