Abstract
Despite the fact that electric dipole ordering plays a key role in the unique physical properties of dielectric materials, electric dipole configurations mostly appear simply as either parallel or antiparallel. Here, we report a canting electric dipole configuration in La-doped Pb(Zr,Sn,Ti)O3 perovskites based on advanced neutron, synchrotron X-ray and three-dimensional electron diffraction techniques. It is revealed that, arising from the coupling between the atomic displacement and oxygen octahedral tilting, this unique electric dipole configuration displays a canting arrangement aligned in the (110)p plane that possesses an antiparallel component along the [110]P direction and a parallel component along the [001]P direction. Remarkably, under an in-situ electric field, the electric dipoles continuously rotate with a gradually reduced canting angle, as confirmed by phase-field simulations, and ultimately evolve into a ferroelectric ordering. Such an evolution gives rises to a small hysteresis and an equivalent lattice strain to the macroscopic strain. These findings enrich the current understanding of the types of electric dipole configurations in dielectric materials and are expected to aid the design of new dielectric materials with emergent properties.
Original language | English |
---|---|
Article number | 2022010 |
Journal | Microstructures |
Volume | 2 |
Issue number | 2 |
DOIs | |
Publication status | Published - Apr 2022 |
Keywords
- Antiferroelectric
- canting
- electric dipole configurations
- perovskite