TY - GEN
T1 - An integrated background model for video surveillance based on primal sketch and 3D scene geometry
AU - Hu, Wenze
AU - Gong, Haifeng
AU - Zhu, Song Chun
AU - Wang, Yontian
PY - 2008
Y1 - 2008
N2 - This paper presents a novel integrated background model for video surveillance. Our model uses a primal sketch representation for image appearance and 3D scene geometry to capture the ground plane and major surfaces in the scene. The primal sketch model divides the background image into three types of regions - flat, sketchable and textured. The three types of regions are modeled respectively by mixture of Gaussians, image primitives and LBP histograms. We calibrate the camera and recover important planes such as ground, horizontal surfaces, walls, stairs in the 3D scene, and use geometric information to predict the sizes and locations of foreground blobs to further reduce false alarms. Compared with the state-of-the-art background modeling methods, our approach is more effective, especially for indoor scenes where shadows, highlights and reflections of moving objects and camera exposure adjusting usually cause problems. Experiment results demonstrate that our approach improves the performance of background/foreground separation at pixel level, and the integrated video surveillance system at the object and trajectory level.
AB - This paper presents a novel integrated background model for video surveillance. Our model uses a primal sketch representation for image appearance and 3D scene geometry to capture the ground plane and major surfaces in the scene. The primal sketch model divides the background image into three types of regions - flat, sketchable and textured. The three types of regions are modeled respectively by mixture of Gaussians, image primitives and LBP histograms. We calibrate the camera and recover important planes such as ground, horizontal surfaces, walls, stairs in the 3D scene, and use geometric information to predict the sizes and locations of foreground blobs to further reduce false alarms. Compared with the state-of-the-art background modeling methods, our approach is more effective, especially for indoor scenes where shadows, highlights and reflections of moving objects and camera exposure adjusting usually cause problems. Experiment results demonstrate that our approach improves the performance of background/foreground separation at pixel level, and the integrated video surveillance system at the object and trajectory level.
UR - http://www.scopus.com/inward/record.url?scp=51949114421&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2008.4587541
DO - 10.1109/CVPR.2008.4587541
M3 - Conference contribution
AN - SCOPUS:51949114421
SN - 9781424422432
T3 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
BT - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
T2 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Y2 - 23 June 2008 through 28 June 2008
ER -