An in situ neutron diffraction study of anomalous superelasticity in a strain glass Ni

Q. H. Zhang, Z. Zhai, Z. H. Nie, S. Harjo, D. Y. Cong, M. G. Wang, J. Li, Y. D. Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Superelastic behavior is traditionally related to the martensitic transition with a collective transformation scenario in some shape memory alloys. A kind of quasi-linear superelasticity accompanied by a finite avalanche or confined martensitic transformation was recently found in some alloy systems with strain glass state. Here, an in situ neutron diffraction technique was used to study the deformation behavior in an Ni43Fe18Ga27Co12 alloy with strain glass state in order to reveal the new intrinsic physical nature of the quasi-linear superelasticity. A significant modulus softening prior to the stress-induced martensitic transformation was observed during compression in the studied alloy, which is similar to the characteristics exhibited in the tweed precursor phenomena prior to temperature-induced martensitic transformation. Moreover, the diffraction peak broadening was further shown during the elastic stage of deformation for both single-crystal and polycrystalline samples, which mainly stems from the short-range fluctuation in the strain field inside each grain based on Williamson-Hall analysis. The authors believe that there exists a spatial heterogeneity in the modulus of the confined martensitic transformation alloy.

Original languageEnglish
Pages (from-to)1183-1191
Number of pages9
JournalJournal of Applied Crystallography
Volume48
DOIs
Publication statusPublished - 1 Aug 2015

Keywords

  • modulus softening
  • neutron diffraction
  • peak broadening
  • phase transformation
  • strain glass
  • superelasticity

Fingerprint

Dive into the research topics of 'An in situ neutron diffraction study of anomalous superelasticity in a strain glass Ni'. Together they form a unique fingerprint.

Cite this