An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation

Jianzhou Wang, Qianyi Xing*, Bo Zeng, Weigang Zhao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

As an irreplaceable power source, electricity is responsible for sustaining the national economy and social development, and the precondition for the power system's stable operation is to perform an accurate short-term load forecast (STLF). However, with the increasing forms of social power consumption and the emergence of large-scale sustainable resources on the grid, which make STLF increasingly challenging as the power load exhibits greater stochasticity and instability. Therefore, a novel STLF system is developed in this paper, which incorporates data fuzzy granulation, a high-performance optimizer for integrating forecasting sequences, point and interval forecasts. Moreover, the performance tests of the optimization algorithm verify that our proposed optimizer can obtain more approximate solution sets to the real Pareto front and outshines the traditional optimization algorithm concerning convergence and diversity. Load data from three regions of Australia demonstrate that our developed system can remarkably contribute to the accuracy and stability of the STLF, and also quantify the volatility and uncertainty of the power load, which allows power workers to better capture the fluctuation interval of future loads and effectively enhance the flexibility of grid operation.

Original languageEnglish
Article number120042
JournalApplied Energy
Volume327
DOIs
Publication statusPublished - 1 Dec 2022

Keywords

  • Ensemble Strategy
  • Fuzzy Information granulation
  • Multi-objective optimizer
  • Short-term load forecast

Fingerprint

Dive into the research topics of 'An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation'. Together they form a unique fingerprint.

Cite this