TY - JOUR
T1 - An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses
AU - Xie, Shanshan
AU - He, Hongwen
AU - Peng, Jiankun
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017
Y1 - 2017
N2 - Model predictive control (MPC) can effectively solve online optimization issues, even with various constraints, when maintained at high robustness. Considering the energy management issue of plug-in hybrid electric bus (PHEB) as a constrained nonlinear optimization problem, a strategy based on stochastic model predictive control (SMPC) is put forward and verified in this paper. Firstly, Markov Chain Monte Carlo Method (MCMC) is adopted to forecast velocity sequences at every current state, in the form of multi scale single step (MSSS), with post-processing algorithms to moderate fluctuations of the prediction results like average filtering, quadratic fitting, and the like. The offline simulation results show that the optimization can effectively improve the predictive accuracy, make the following energy management feasible and reduce the fuel consumption by 1.9%. Then the SMPC-based energy management strategy is proposed. In order to prevent the driving cycle state deficiencies from interrupting the prediction for practical application, a state reconstitution method is constructed accordingly. Besides, the predictive steps are made time-varying by an online accuracy estimation method and a corresponding threshold to maintain the accuracy of forecast. Finally, the hardware-in-the-loop (HIL) experiments are conducted and the results show that the SMPC-based strategy is reasonable and the fuel consumption decreases by 3.9% further with variable predictive steps than that of fixed ones. In summary, this paper illustrates an effective SMPC-based methodology for energy management for PHEB, and techniques like MSSS prediction with post-processing, state reconstitution method, online accuracy estimation can be adopted to solve similar problems.
AB - Model predictive control (MPC) can effectively solve online optimization issues, even with various constraints, when maintained at high robustness. Considering the energy management issue of plug-in hybrid electric bus (PHEB) as a constrained nonlinear optimization problem, a strategy based on stochastic model predictive control (SMPC) is put forward and verified in this paper. Firstly, Markov Chain Monte Carlo Method (MCMC) is adopted to forecast velocity sequences at every current state, in the form of multi scale single step (MSSS), with post-processing algorithms to moderate fluctuations of the prediction results like average filtering, quadratic fitting, and the like. The offline simulation results show that the optimization can effectively improve the predictive accuracy, make the following energy management feasible and reduce the fuel consumption by 1.9%. Then the SMPC-based energy management strategy is proposed. In order to prevent the driving cycle state deficiencies from interrupting the prediction for practical application, a state reconstitution method is constructed accordingly. Besides, the predictive steps are made time-varying by an online accuracy estimation method and a corresponding threshold to maintain the accuracy of forecast. Finally, the hardware-in-the-loop (HIL) experiments are conducted and the results show that the SMPC-based strategy is reasonable and the fuel consumption decreases by 3.9% further with variable predictive steps than that of fixed ones. In summary, this paper illustrates an effective SMPC-based methodology for energy management for PHEB, and techniques like MSSS prediction with post-processing, state reconstitution method, online accuracy estimation can be adopted to solve similar problems.
KW - Energy management strategy
KW - Hardware-in-the-loop experiment
KW - Markov Chain Monte Carlo Method
KW - Plug-in hybrid electric bus
KW - Stochastic model predictive control
UR - http://www.scopus.com/inward/record.url?scp=85008429834&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2016.12.112
DO - 10.1016/j.apenergy.2016.12.112
M3 - Article
AN - SCOPUS:85008429834
SN - 0306-2619
VL - 196
SP - 279
EP - 288
JO - Applied Energy
JF - Applied Energy
ER -