Abstract
An electrically modulated single-/dual-color imaging photodetector with fast response speed is developed based on a small molecule (COi8DFIC)/perovskite (CH3NH3PbBr3) hybrid film. Owing to the type-I heterojunction, the device can facilely transform dual-color images to single-color images by applying a small bias voltage. The photodetector exhibits two distinct cut-off wavelengths at ≈544 nm (visible region) and ≈920 nm (near-infrared region), respectively, without any power supply. Its two peak responsivities are 0.16 A W−1 at ≈525 nm and 0.041 A W−1 at ≈860 nm with a fast response speed (≈102 ns). Under 0.6 V bias, the photodetector can operate in a single-color mode with a peak responsivity of 0.09 A W−1 at ≈475 nm, showing a fast response speed (≈102 ns). A physical model based on band energy theory is developed to illustrate the origin of the tunable single-/dual-color photodetection. This work will stimulate new approaches for developing solution-processed multifunctional photodetectors for imaging photodetection in complex circumstances.
Original language | English |
---|---|
Article number | 1907257 |
Journal | Advanced Materials |
Volume | 32 |
Issue number | 24 |
DOIs | |
Publication status | Published - 1 Jun 2020 |
Externally published | Yes |
Keywords
- dual-color imaging
- organic/perovskite photodetectors
- response speed