An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates

Gang Qin, Ruirun Chen*, Peter K. Liaw, Yanfei Gao, Liang Wang, Yanqing Su, Hongsheng Ding, Jingjie Guo, Xiaoqing Li

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

58 Citations (Scopus)

Abstract

High-entropy alloys (HEAs) with good ductility and high strength are usually prepared by a combination of forging and heat-treatment processes. In comparison, the as-cast HEAs typically do not reach strengths similar to those of HEAs produced by the forging and heat-treatment processes. Here we report a novel equiatomic-ratio CoCrCuMnNi HEA prepared by vacuum arc melting. We observe that this HEA has excellent mechanical properties, i.e., a yield strength of 458 MPa, and an ultimate tensile strength of 742 MPa with an elongation of 40%. Many nanometer precipitates (5-50 nm in size) and domains (5-10 nm in size) are found in the inter-dendrite and dendrite zones of the produced HEA, which is the key factor for its excellent mechanical properties. The enthalpy of mixing between Cu and Mn, Cr, Co, or Ni is higher than those of mixing between any two of Cr, Co, Ni and Mn, which leads to the separation of Cu from the CoCrCuMnNi HEA. Furthermore, we reveal the nanoscale-precipitate-phase-forming mechanism in the proposed HEA.

Original languageEnglish
Pages (from-to)3965-3976
Number of pages12
JournalNanoscale
Volume12
Issue number6
DOIs
Publication statusPublished - 14 Feb 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates'. Together they form a unique fingerprint.

Cite this