Abstract
Three Dimensional Magnetically Suspended Wheel (3-DMSW) is a new kind of inertia actuator for spacecraft attitude control, which can provide a 3 degrees of freedom torque. On account of the constraint characteristics of 3-DMSW such as a small deflection saturation angle of rotor shaft and the saturation of rotor's variable rotational speed, an anti-saturation steering law based on weighted pseudo inverse is proposed for 3-DMSW cluster. A new weight adjustment method is proposed to adjust the weights of shaft deflections dynamically. A specially designed exponential function with current deflection angle and angular velocity information on the exponent position is adopted as the evaluation criterion of current torque output ability of shaft deflection. Thus the torque command can be distributed dynamically with no angle saturation. The weight adjustment method is demonstrated theoretically and the effectiveness of the anti-saturation steering law is validated by conducting several numerical simulations of attitude agile maneuver. Comparing with the 3-DMSW cluster and flywheel cluster using the traditional steering law, the results show that the 3-DMSW cluster using the proposed method makes the process of agile maneuver more rapid and accurate and the saturation angles of 3-DMSW cluster will not be reached.
Original language | English |
---|---|
Pages (from-to) | 467-474 |
Number of pages | 8 |
Journal | Acta Astronautica |
Volume | 151 |
DOIs | |
Publication status | Published - Oct 2018 |
Externally published | Yes |
Keywords
- Anti-saturation steering law
- Attitude control system
- Three Dimensional Magnetically Suspended Wheel (3-DMSW)
- Weighted pseudo inverse