AMD Classification Based on Adversarial Domain Adaptation with Center Loss

Shengzhu Yang, Xi Zhang, He Zhao*, Huiqi Li*, Hanruo Liu, Ningli Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

In this paper, we present a deep learning approach for automatic categorization of age-related macular degeneration (AMD). Faced with the deficiency of training data, we propose a solution to combine additional data to effectively assist the classification task. During training process, the retinal fundus images from two datasets are mapped into a common feature space with adversarial domain adaptation to reduce domain discrepancy. Moreover, we introduce center loss to increase the intra-class compactness of the extracted features to further improve the classification performance. Experiments are conducted on three public fundus image datasets: STARE, ODIR and iCHALLENGE-AMD (hereinafter referred to as iAMD). Our method outperforms three state-of-the-art classification models as well as other augmentation approaches. The proposed approach provides a general framework to handle the issue of training samples with domain discrepancy.

Original languageEnglish
Title of host publicationISBI 2022 - Proceedings
Subtitle of host publication2022 IEEE International Symposium on Biomedical Imaging
PublisherIEEE Computer Society
ISBN (Electronic)9781665429238
DOIs
Publication statusPublished - 2022
Event19th IEEE International Symposium on Biomedical Imaging, ISBI 2022 - Kolkata, India
Duration: 28 Mar 202231 Mar 2022

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2022-March
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference19th IEEE International Symposium on Biomedical Imaging, ISBI 2022
Country/TerritoryIndia
CityKolkata
Period28/03/2231/03/22

Keywords

  • AMD classification
  • adversarial domain adaptation
  • discriminative features

Fingerprint

Dive into the research topics of 'AMD Classification Based on Adversarial Domain Adaptation with Center Loss'. Together they form a unique fingerprint.

Cite this