TY - JOUR
T1 - AlN micromechanical radial-contour disc resonator
AU - Wang, Gang
AU - Xu, Li Xin
AU - Ababneh, Abdallah
AU - Schwarz, Patrick
AU - Feili, Dara
AU - Seidel, Helmut
PY - 2013/9
Y1 - 2013/9
N2 - Micromechanical resonators that have high performance and are small in size are competitive candidates for radio frequency (RF) device minimization, paving the way for high performance monolithic transceivers. A piezoelectric aluminium nitride radial-contour mode disc resonator with a CMOS-compatible fabrication process is presented. The piezoelectric properties of the resonator disc, concerning the driving voltage and resonance mode deformation, are analysed, revealing the advantages introduced when using a sputter deposited AlN thin film. The radial-contour resonance mode of the disc resonator was investigated by finite element method simulation and theoretical evaluation. The resonance frequency was found to be thickness-independent, which is beneficial for fabrication and integration. In view of CMOS compatibility, a fabrication process with a low thermal budget and a tungsten titanium sacrificial layer was designed; devices were fabricated on 4 inch silicon wafers. The RF performance of the resonators with a diameter of 150 μm was measured using a HP4395A network analyzer, yielding a resonant frequency of 14.11 MHz with a Q value of 3125 and a return loss of 31.46 dB. These results indicate that this device is attractive for use in RF frequency-selecting and generation devices in high performance wireless communication systems.
AB - Micromechanical resonators that have high performance and are small in size are competitive candidates for radio frequency (RF) device minimization, paving the way for high performance monolithic transceivers. A piezoelectric aluminium nitride radial-contour mode disc resonator with a CMOS-compatible fabrication process is presented. The piezoelectric properties of the resonator disc, concerning the driving voltage and resonance mode deformation, are analysed, revealing the advantages introduced when using a sputter deposited AlN thin film. The radial-contour resonance mode of the disc resonator was investigated by finite element method simulation and theoretical evaluation. The resonance frequency was found to be thickness-independent, which is beneficial for fabrication and integration. In view of CMOS compatibility, a fabrication process with a low thermal budget and a tungsten titanium sacrificial layer was designed; devices were fabricated on 4 inch silicon wafers. The RF performance of the resonators with a diameter of 150 μm was measured using a HP4395A network analyzer, yielding a resonant frequency of 14.11 MHz with a Q value of 3125 and a return loss of 31.46 dB. These results indicate that this device is attractive for use in RF frequency-selecting and generation devices in high performance wireless communication systems.
UR - http://www.scopus.com/inward/record.url?scp=84884852093&partnerID=8YFLogxK
U2 - 10.1088/0960-1317/23/9/095002
DO - 10.1088/0960-1317/23/9/095002
M3 - Article
AN - SCOPUS:84884852093
SN - 0960-1317
VL - 23
JO - Journal of Micromechanics and Microengineering
JF - Journal of Micromechanics and Microengineering
IS - 9
M1 - 095002
ER -