Abstract
Solar energy-facilitated icephobic films have emerged as clean and renewable materials, which can potentially solve energy loss problems during anti-icing/deicing applications. However, there is a significant challenge for all-day and continuous anti-icing/deicing applications under practical conditions with insufficient sunlight or no sunlight. In this work, a chemical oxidation polymerization method was used to prepare in situ self-wrinkling porous poly(dimethylsiloxane) (PDMS)/polypyrrole (PPy) (POP-P) films based on a facile sugar template method. The porous-structured film enhanced light absorption by elongating the optical path for multiple reflections, maintaining an outstanding broad-band solar light absorption (295-2500 nm) and an exceptional photo-thermal effect. The light-to-heat performance showed a temperature enhancement from room temperature to 89.1 °C within 400 s under 1 sun illumination (qi= 1.0 kW m-2). In addition, this membrane also exhibited an electro-thermal effect at different voltages due to the Joule effect, and the saturation temperature could reach 75.4 °C at a voltage of 32 V. As an anti-icing/deicing material, this POP-P surface remained ice-free (−25 °C) throughout alternating of day and night, under conditions of a solar intensity of 0.8 kW m-2and a voltage of 25 V.
Original language | English |
---|---|
Pages (from-to) | 44948-44955 |
Number of pages | 8 |
Journal | ACS applied materials & interfaces |
Volume | 13 |
Issue number | 37 |
DOIs | |
Publication status | Published - 22 Sept 2021 |
Externally published | Yes |
Keywords
- anti-icing
- deicing
- electro-thermal
- photo-thermal