AI Generated Signal for Wireless Sensing

Hanxiang He, Han Hu*, Xintao Huan, Heng Liu, Jianping An, Shiwen Mao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Deep learning has significantly advanced wireless sensing technology by leveraging substantial amounts of high-quality training data. However, collecting wireless sensing data encounters diverse challenges, including unavoidable data noise, limited data scale due to significant collection overhead, and the necessity to reacquire data in new environments. Taking inspiration from the achievements of AI-generated content, this paper introduces a signal generation method that achieves data denoising, augmentation, and synthesis by disentangling distinct attributes within the signal, such as individual and environment. The approach encompasses two pivotal modules: structured signal selection and signal disentanglement generation. Structured signal selection establishes a minimal signal set with the target attributes for subsequent attribute disentanglement. Signal disentanglement generation disentangles the target attributes and reassembles them to generate novel signals. Extensive experimental results demonstrate that the proposed method can generate data that closely resembles real-world data on two wireless sensing datasets, exhibiting state-of-the-art performance. Our approach presents a robust framework for comprehending and manipulating attribute-specific information in wireless sensing.

Original languageEnglish
Title of host publicationGLOBECOM 2023 - 2023 IEEE Global Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6097-6102
Number of pages6
ISBN (Electronic)9798350310900
DOIs
Publication statusPublished - 2023
Event2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, Malaysia
Duration: 4 Dec 20238 Dec 2023

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Conference

Conference2023 IEEE Global Communications Conference, GLOBECOM 2023
Country/TerritoryMalaysia
CityKuala Lumpur
Period4/12/238/12/23

Keywords

  • Wireless sensing
  • disentangled representation learning
  • signal synthesis

Fingerprint

Dive into the research topics of 'AI Generated Signal for Wireless Sensing'. Together they form a unique fingerprint.

Cite this