Adaptive Sliding Mode Control Integrating with RBFNN for Proton Exchange Membrane Fuel Cell Power Conditioning

Xuelian Xiao, Jianguo Lv, Yuhua Chang, Jinzhou Chen, Hongwen He*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Proton exchange membrane fuel cells (PEMFC) are considered a promising solution for renewable energy application. To meet industrial requirements, the power source consisting of PEMFC is required to be power regulator to generate a stable and desired current and/or voltage under various working conditions. In this article, the adaptive sliding mode control integrating with the radial basis function neural network (RBFNN) approach for DC/DC buck converter-based PEMFC is presented to address perturbations from inner parameters as well as external disturbances in terms of power conditioning. Sliding mode control (SMC) and backstepping schemes are integrated to tackle the nonlinear and coupled outputs resulting in large control errors and slow response caused by PEMFC characteristics. To accurately estimate the parametric uncertainties and disturbance injections, such as buck converter parameter varying and PEMFC operation point changing, the RBFNN adaptive law is developed according to the defined Lyapunov and Gaussian functions overcoming the limitations of non-/linear parameter estimating. Simulations and experiments on the PEMFC power supply prototype governed by the DS1104 board are carried out. The comparative results indicate that the proposed RBFNN estimation associated with the backstepping SMC can reduce up to 7.5% overshoot and smooth PEMFC voltage and inductor current when disturbance changes in a voltage regulation experiment. Thus, the proposed method can regulate the current or voltage of a PEMFC power supply with robustness, adaptivity, and no chattering phenomenon.

Original languageEnglish
Article number3132
JournalApplied Sciences (Switzerland)
Volume12
Issue number6
DOIs
Publication statusPublished - 1 Mar 2022

Keywords

  • DC/DC buck converter
  • RBFNN estimation
  • adaptive backstepping sliding mode control (SMC)
  • power conditioning
  • proton exchange membrane fuel cell (PEMFC)

Fingerprint

Dive into the research topics of 'Adaptive Sliding Mode Control Integrating with RBFNN for Proton Exchange Membrane Fuel Cell Power Conditioning'. Together they form a unique fingerprint.

Cite this