TY - JOUR
T1 - Adaptive observer-based parameter estimation with application to road gradient and vehicle mass estimation
AU - Mahyuddin, Muhammad Nasiruddin
AU - Na, Jing
AU - Herrmann, Guido
AU - Ren, Xuemei
AU - Barber, Phil
PY - 2014/6
Y1 - 2014/6
N2 - A novel observer-based parameter estimation scheme with sliding mode term has been developed to estimate the road gradient and the vehicle weight using only the vehicle's velocity and the driving torque. The estimation algorithm exploits all known terms in the system dynamics and a low-pass filtered representation of the dynamics to derive an explicit expression of the parameter estimation error without measuring the acceleration. The proposed parameter estimation scheme which features a sliding-mode term to ensure the fast and robust convergence of the estimation in the presence of persistent excitation is augmented to an adaptive observer and analyzed using Lyapunov Theory. The analytical results show that the algorithm is stable and ensures finite-time error convergence to a bounded error even in the presence of disturbances. In the absence of disturbances, convergence to the true values in finite time is guaranteed. A simple practical method for validating persistent excitation is provided using the new theoretical approach to estimation. This is validated by the practical implementation of the algorithm on a small-scaled vehicle, emulating a car system. The slope gradient as well as the vehicle's mass/weight are estimated online. The algorithm shows a significant improvement over previous results.
AB - A novel observer-based parameter estimation scheme with sliding mode term has been developed to estimate the road gradient and the vehicle weight using only the vehicle's velocity and the driving torque. The estimation algorithm exploits all known terms in the system dynamics and a low-pass filtered representation of the dynamics to derive an explicit expression of the parameter estimation error without measuring the acceleration. The proposed parameter estimation scheme which features a sliding-mode term to ensure the fast and robust convergence of the estimation in the presence of persistent excitation is augmented to an adaptive observer and analyzed using Lyapunov Theory. The analytical results show that the algorithm is stable and ensures finite-time error convergence to a bounded error even in the presence of disturbances. In the absence of disturbances, convergence to the true values in finite time is guaranteed. A simple practical method for validating persistent excitation is provided using the new theoretical approach to estimation. This is validated by the practical implementation of the algorithm on a small-scaled vehicle, emulating a car system. The slope gradient as well as the vehicle's mass/weight are estimated online. The algorithm shows a significant improvement over previous results.
KW - Adaptive observer
KW - parameter estimation
KW - vehicle dynamics identification
UR - http://www.scopus.com/inward/record.url?scp=84891758291&partnerID=8YFLogxK
U2 - 10.1109/TIE.2013.2276020
DO - 10.1109/TIE.2013.2276020
M3 - Article
AN - SCOPUS:84891758291
SN - 0278-0046
VL - 61
SP - 2851
EP - 2863
JO - IEEE Transactions on Industrial Electronics
JF - IEEE Transactions on Industrial Electronics
IS - 6
M1 - 6573410
ER -