Adaptive Fault-tolerant Federated Filter with Fault Detection Method Based on Combination of LSTM and Chi-square Test

Xuan Xiao, Jiaxin Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

In order to solve the problem that the global estimation accuracy is affected by the gradual changing fault of federated filter subsystem, the features of gradual changing fault and the advantages of a long short-term memory (LSTM) neural network classification algorithm are analyzed. On this basis, a fault detection method combining residual Chi square detection algorithm with long short-term memory neural network detection method is proposed, which can effectively detect the gradual changing fault and abrupt faults of sub filters and reduce the impact of faults on global estimation accuracy. The simulation results show that this fault detection method is better than the traditional mathematical model diagnosis methods and the convolutional neural network (CNN) detection methods when the subsystem gradual changing fault occurs.

Original languageEnglish
Title of host publicationProceedings of the 40th Chinese Control Conference, CCC 2021
EditorsChen Peng, Jian Sun
PublisherIEEE Computer Society
Pages3059-3064
Number of pages6
ISBN (Electronic)9789881563804
DOIs
Publication statusPublished - 26 Jul 2021
Event40th Chinese Control Conference, CCC 2021 - Shanghai, China
Duration: 26 Jul 202128 Jul 2021

Publication series

NameChinese Control Conference, CCC
Volume2021-July
ISSN (Print)1934-1768
ISSN (Electronic)2161-2927

Conference

Conference40th Chinese Control Conference, CCC 2021
Country/TerritoryChina
CityShanghai
Period26/07/2128/07/21

Keywords

  • Integrated navigation
  • fault detection
  • long short-term memory neural network

Fingerprint

Dive into the research topics of 'Adaptive Fault-tolerant Federated Filter with Fault Detection Method Based on Combination of LSTM and Chi-square Test'. Together they form a unique fingerprint.

Cite this