Adaptable Text Matching via Meta-Weight Regulator

Bo Zhang, Chen Zhang, Fang Ma, Dawei Song*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Neural text matching models have been used in a range of applications such as question answering and natural language inference, and have yielded a good performance. However, these neural models are of a limited adaptability, resulting in a decline in performance when encountering test examples from a different dataset or even a different task. The adaptability is particularly important in the few-shot setting: in many cases, there is only a limited amount of labeled data available for a target dataset or task, while we may have access to a richly labeled source dataset or task. However, adapting a model trained on the abundant source data to a few-shot target dataset or task is challenging. To tackle this challenge, we propose a Meta-Weight Regulator (MWR), which is a meta-learning approach that learns to assign weights to the source examples based on their relevance to the target loss. Specifically, MWR first trains the model on the uniformly weighted source examples, and measures the efficacy of the model on the target examples via a loss function. By iteratively performing a (meta) gradient descent, high-order gradients are propagated to the source examples. These gradients are then used to update the weights of source examples, in a way that is relevant to the target performance. As MWR is model-agnostic, it can be applied to any backbone neural model. Extensive experiments are conducted with various backbone text matching models, on four widely used datasets and two tasks. The results demonstrate that our proposed approach significantly outperforms a number of existing adaptation methods and effectively improves the cross-dataset and cross-task adaptability of the neural text matching models in the few-shot setting.

Original languageEnglish
Title of host publicationSIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery, Inc
Pages870-879
Number of pages10
ISBN (Electronic)9781450387323
DOIs
Publication statusPublished - 6 Jul 2022
Event45th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022 - Madrid, Spain
Duration: 11 Jul 202215 Jul 2022

Publication series

NameSIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference45th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022
Country/TerritorySpain
CityMadrid
Period11/07/2215/07/22

Keywords

  • adaptation method
  • few-shot learning
  • text matching

Fingerprint

Dive into the research topics of 'Adaptable Text Matching via Meta-Weight Regulator'. Together they form a unique fingerprint.

Cite this

Zhang, B., Zhang, C., Ma, F., & Song, D. (2022). Adaptable Text Matching via Meta-Weight Regulator. In SIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 870-879). (SIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval). Association for Computing Machinery, Inc. https://doi.org/10.1145/3477495.3531932