Active thermal management for an automotive water-cooled proton exchange membrane fuel cell by using feedback control

Jin Zhang, Ya Xiong Wang*, Hongwen He, Yao Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Proton exchange membrane fuel cell (PEMFC) appears as a green energy to solve the environmental and energy problems in the automotive industry. Temperature changes in PEMFC affect fuel cell's efficiency and lifetime. If the stack temperature is too low, the electrochemical reaction rate slows down, leading to inefficiency and shortening the working life of the stack. However, too high stack temperature may dry the membrane and decrease proton conductivity, or even destroy the membrane. Therefore, to avoid stack temperature fluctuations and maintain proper stack temperature, a thermal management-oriented model of the vehicular water-cooled PEMFC is presented, which is based on electrochemical reactions and thermodynamics. A PI associated with an ON/OFF feedback controller is designed to control the output mass flow rates of the circulating water pump and the radiator fans. To test the efficacy of the proposed model and controller, different load currents including typical driving cycles are applied. The results indicate that the stack temperature well tracks the reference temperature, and the temperature difference of cooling water in and out of the stack is less than 6°C.

Original languageEnglish
Title of host publication2020 IEEE Vehicle Power and Propulsion Conference, VPPC 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728189598
DOIs
Publication statusPublished - Nov 2020
Event17th IEEE Vehicle Power and Propulsion Conference, VPPC 2020 - Virtual, Gijon, Spain
Duration: 18 Nov 202016 Dec 2020

Publication series

Name2020 IEEE Vehicle Power and Propulsion Conference, VPPC 2020 - Proceedings

Conference

Conference17th IEEE Vehicle Power and Propulsion Conference, VPPC 2020
Country/TerritorySpain
CityVirtual, Gijon
Period18/11/2016/12/20

Keywords

  • PI and ON/OFF feedback control
  • Thermal management
  • Thermal system modeling
  • Water-cooled PEMFC

Fingerprint

Dive into the research topics of 'Active thermal management for an automotive water-cooled proton exchange membrane fuel cell by using feedback control'. Together they form a unique fingerprint.

Cite this