TY - JOUR
T1 - Active fault-tolerant control scheme for four-wheel independent drive electric vehicles under actuator faults
AU - Wang, Weida
AU - Hu, Biao
AU - Yang, Chao
AU - Ma, Taiheng
AU - Zhang, Yuhang
N1 - Publisher Copyright:
© IMechE 2023.
PY - 2023
Y1 - 2023
N2 - For chassis-by-wire in four-wheel independent drive electric vehicles (4WID-EVs), a large number of controllable actuators with control systems and electrical systems make the vehicle more sensitive to the failure of electronic components in actuators. When actuator faults occur, the stability and handling performance of 4WID-EVs will deteriorate, even affecting the driving safety. To handle this problem, the typical actuator faults of 4WID-EVs and their characteristics are firstly analyzed in detail. After that, a control-oriented uncertain 7 degrees of freedom vehicle dynamics model is established. Then, a modified sliding mode active fault tolerant control (FTC) scheme with layered architecture is proposed, which contains the upper and lower layers. In the upper layer, a modified sliding mode controller with a nonlinear extended state observer is designed to track the reference states under the influence of model uncertainty. In the lower layer, an improved torque distribution algorithm is proposed to compensate for the limited direct yaw moment caused by in-wheel motor faults. Comparison works are carried out both in simulation and experiment. Simulation results show that the proposed method improves performance by 80.5% and 70.2% compared with existing FTC method under 2 fault conditions, respectively. Furthermore, real vehicle experiments also indicate that the proposed method improves performance by 59.6% and 74.4% under two pre-set fault conditions, respectively. The proposed method might provide a theoretical reference for actual controller design in 4WID-EVs.
AB - For chassis-by-wire in four-wheel independent drive electric vehicles (4WID-EVs), a large number of controllable actuators with control systems and electrical systems make the vehicle more sensitive to the failure of electronic components in actuators. When actuator faults occur, the stability and handling performance of 4WID-EVs will deteriorate, even affecting the driving safety. To handle this problem, the typical actuator faults of 4WID-EVs and their characteristics are firstly analyzed in detail. After that, a control-oriented uncertain 7 degrees of freedom vehicle dynamics model is established. Then, a modified sliding mode active fault tolerant control (FTC) scheme with layered architecture is proposed, which contains the upper and lower layers. In the upper layer, a modified sliding mode controller with a nonlinear extended state observer is designed to track the reference states under the influence of model uncertainty. In the lower layer, an improved torque distribution algorithm is proposed to compensate for the limited direct yaw moment caused by in-wheel motor faults. Comparison works are carried out both in simulation and experiment. Simulation results show that the proposed method improves performance by 80.5% and 70.2% compared with existing FTC method under 2 fault conditions, respectively. Furthermore, real vehicle experiments also indicate that the proposed method improves performance by 59.6% and 74.4% under two pre-set fault conditions, respectively. The proposed method might provide a theoretical reference for actual controller design in 4WID-EVs.
KW - Four-wheel independent drive electric vehicles
KW - fault tolerant control (FTC)
KW - in-wheel motor fault
KW - sliding mode control
KW - tracking control
UR - http://www.scopus.com/inward/record.url?scp=85152264095&partnerID=8YFLogxK
U2 - 10.1177/09544070231166430
DO - 10.1177/09544070231166430
M3 - Article
AN - SCOPUS:85152264095
SN - 0954-4070
JO - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
JF - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
ER -